Matematik Serüveni 🚀
Ünite 2 / Bölüm 3: Sayı Sistemleri (Taban Aritmetiği)
Harika gidiyorsun! 🧑🏫
Şimdi "Sayılar" ünitemizin üçüncü bölümüne, yani Taban Aritmetiği konusuna geçiyoruz.
Bu konu, KPSS'de sık çıkmasa da çıktığı zaman en kolay netlerden biridir. Sadece 2 ana kuralı ve 2 çevirme yöntemini öğreneceğiz.
Hazır mısın?
Bölüm 3: Adımlar
Matematiğin "yabancı dilini" öğreniyoruz. Korkma, çok kolay!
Biz 10 parmağımız olduğu için 10'luk taban kullanırız.
425 sayısı aslında şu demektir:
Yani: (4 * 10²) + (2 * 10¹) + (5 * 10⁰)
Eğer 5'lik taban (sadece 5 parmağımız olsaydı) kullansaydık, 10'un kuvvetleri yerine 5'in kuvvetlerini kullanırdık (1, 5, 25, 125...).
Bu konunun TEK önemli kuralı budur.
- 10'luk tabanda rakamlar {0, 1, ... 9}'dur. Asla 10 diye bir rakam yoktur.
- 5'lik tabanda rakamlar {0, 1, 2, 3, 4}'tür. 5 diye bir rakam YOKTUR!
- (A3B)₇ gibi bir sayı görüyorsan, bil ki A < 7 ve B < 7 olmak zorundadır.
Buna "Çözümleme" denir. Sayıyı, tabanın kuvvetleriyle (1'ler, 5'ler, 25'ler...) çarparak açarız.
(234)₅ sayısı 10'luk tabanda kaça eşittir?
Sayı 5'lik tabanda. En sağdaki basamak "birler" (5⁰=1), ortadaki "beşler" (5¹=5), en soldaki "yirmibeşler" (5²=25) basamağıdır.
Adım 2: Çözümleme (Açma)
(234)₅ = 2 * 5²
(234)₅ = 3 * 5¹
(234)₅ = 4 * 5⁰
Adım 3: Hesaplama
= (2 * 25) + (3 * 5) + (4 * 1)
= 50 + 15 + 4 = 69 Cevap: 69
Şimdi 3 soruluk mini sınava geçelim!
Şimdi tam tersini yapacağız: 69 sayısını (10'luk) nasıl (234)₅'e (5'lik) geri çeviririz?
10'luk tabandaki sayı, çevrilmek istenen tabana sürekli bölünür. Kalanlar tersten yazılır.
10'luk tabandaki 98 sayısı, 4'lük tabanda nasıl yazılır?
98'i, bölüm tabandan (4'ten) küçük kalana kadar 4'e böleceğiz ve Kalanları not edeceğiz.
98 / 4 = 24 -> KALAN: 2
24 / 4 = 6 -> KALAN: 0
6 / 4 = 1 -> KALAN: 2
(Bölüm (1) tabandan (4) küçük olduğu için işlem bitti. Bölümü de alırız.)
Adım 2: Kalanları Tersten Okuma
En son bölümden başlayarak tüm kalanları aşağıdan yukarıya doğru okuruz:
1 ... 2 ... 0 ... 2 Cevap: (1202)₄
1. (4A2)₆ sayısında A kaç farklı değer alır?
2. (213)ₐ ve (134)ₐ (Hata! b olmalı) sayıları için a+b en az kaçtır?
Kural: Rakamlar tabandan (6) küçük olmalı.
4<6 (Doğru), 2<6 (Doğru), A<6 (Zorunlu).
A'nın alabileceği değerler: {0, 1, 2, 3, 4, 5}.
Cevap: 6 farklı değer alır.
Soru 2: (213)ₐ ve (134)ₑ (Düzeltme: (134)ₐ değil, (134)ₑ)
(Not: Soruyu (134)b olarak düzeltiyorum, aksi halde anlamsız olur)
(213)ₐ: Taban 'a', en büyük rakamdan (3) büyük olmalı. a > 3. En az a=4.
(134)ₑ: Taban 'b', en büyük rakamdan (4) büyük olmalı. b > 4. En az b=5.
Toplam en az: 4 + 5 = 9. Cevap: 9
Şimdi 3 soruluk mini sınava geçelim!
En klasik KPSS soruları bu adımdadır. İki kuralı birleştiririz.
5 ve 7 sayı tabanıdır. (32)₅ = (2a)₇ olduğuna göre, a kaçtır?
Sol Taraf (32)₅:
= (3 * 5¹) + (2 * 5⁰)
= (3 * 5) + (2 * 1) = 15 + 2 = 17
Sağ Taraf (2a)₇:
= (2 * 7¹) + (a * 7⁰)
= (2 * 7) + (a * 1) = 14 + a
(Hayati kuralı unutma: a < 7 olmalı)
Denklemi Çöz:
17 = 14 + a
17 - 14 = a => a = 3
(a=3, kurala uyuyor mu? Evet, 3 < 7) Cevap: 3
4 tabanında (213)₄ + (132)₄ işleminin sonucu yine 4 tabanında kaçtır?
Garanti Yol: 10'luğa çevir, Topla, Geri çevir.
Adım 1: 10'luğa Çevir
(213)₄ = (2 * 4²) + (1 * 4¹) + (3 * 4⁰) = (2*16) + (1*4) + (3*1) = 32 + 4 + 3 = 39
(132)₄ = (1 * 4²) + (3 * 4¹) + (2 * 4⁰) = (1*16) + (3*4) + (2*1) = 16 + 12 + 2 = 30
Adım 2: 10'luk Tabanda Topla
39 + 30 = 69
Adım 3: Sonucu Geri 4'lük Tabana Çevir
69'u sürekli 4'e böl:
69 / 4 = 17 -> Kalan: 1
17 / 4 = 4 -> Kalan: 1
4 / 4 = 1 -> Kalan: 0
Bölüm (1) 4'ten küçük olunca durduk.
Tersten oku: 1011 Cevap: (1011)₄
t sayı tabanı (t > 2) olmak üzere, A = (201)t, B = (102)t ve A - B = 63 olduğuna göre, t (taban) kaçtır?
A = (201)t = (2 * t²) + (0 * t¹) + (1 * t⁰) = 2t² + 1
Adım 2: B Sayısını 10'luğa Çevir
B = (102)t = (1 * t²) + (0 * t¹) + (2 * t⁰) = t² + 2
Adım 3: Denklemi Kur (Parantez Tuzağı!)
A - B = 63
(2t² + 1) - (t² + 2) = 63
Eksiyi dağıt:
2t² + 1 - t² - 2 = 63
Adım 4: Denklemi Çöz
(2t² - t²) + (1 - 2) = 63
t² - 1 = 63
t² = 64
t = 8 (Taban negatif olamaz)
Cevap: 8
Şimdi 3 soruluk mini sınava geçelim!
Tebrikler! Bölüm 3'ü tamamladın. Şimdi öğrendiklerimizi 10 soruluk bir final sınavıyla test etme zamanı.
Unutma: Geçmek için 10 sorudan en az 8'ini doğru yapmalısın!
Test Sonucu
Harikasın!
Tebrikler! Bu adımı başarıyla tamamladın.
Test Sonucu
Tekrar Deneyelim!
Birkaç hata var. Lütfen konuyu tekrar gözden geçirin.
Matematik Serüveni 🚀
Ünite 2 / Bölüm 3: Sayı Sistemleri (Taban Aritmetiği)
Harika gidiyorsun! 🧑🏫
Şimdi "Sayılar" ünitemizin üçüncü bölümüne, yani Taban Aritmetiği konusuna geçiyoruz.
Bu konu, KPSS'de sık çıkmasa da çıktığı zaman en kolay netlerden biridir. Sadece 2 ana kuralı ve 2 çevirme yöntemini öğreneceğiz.
Hazır mısın?
Bölüm 3: Adımlar
Matematiğin "yabancı dilini" öğreniyoruz. Korkma, çok kolay!
Biz 10 parmağımız olduğu için 10'luk taban kullanırız.
425 sayısı aslında şu demektir:
Yani: (4 * 10²) + (2 * 10¹) + (5 * 10⁰)
Eğer 5'lik taban (sadece 5 parmağımız olsaydı) kullansaydık, 10'un kuvvetleri yerine 5'in kuvvetlerini kullanırdık (1, 5, 25, 125...).
Bu konunun TEK önemli kuralı budur.
- 10'luk tabanda rakamlar {0, 1, ... 9}'dur. Asla 10 diye bir rakam yoktur.
- 5'lik tabanda rakamlar {0, 1, 2, 3, 4}'tür. 5 diye bir rakam YOKTUR!
- (A3B)₇ gibi bir sayı görüyorsan, bil ki A < 7 ve B < 7 olmak zorundadır.
Buna "Çözümleme" denir. Sayıyı, tabanın kuvvetleriyle (1'ler, 5'ler, 25'ler...) çarparak açarız.
(234)₅ sayısı 10'luk tabanda kaça eşittir?
Sayı 5'lik tabanda. En sağdaki basamak "birler" (5⁰=1), ortadaki "beşler" (5¹=5), en soldaki "yirmibeşler" (5²=25) basamağıdır.
Adım 2: Çözümleme (Açma)
(234)₅ = 2 * 5²
(234)₅ = 3 * 5¹
(234)₅ = 4 * 5⁰
Adım 3: Hesaplama
= (2 * 25) + (3 * 5) + (4 * 1)
= 50 + 15 + 4 = 69 Cevap: 69
Şimdi 3 soruluk mini sınava geçelim!
Şimdi tam tersini yapacağız: 69 sayısını (10'luk) nasıl (234)₅'e (5'lik) geri çeviririz?
10'luk tabandaki sayı, çevrilmek istenen tabana sürekli bölünür. Kalanlar tersten yazılır.
10'luk tabandaki 98 sayısı, 4'lük tabanda nasıl yazılır?
98'i, bölüm tabandan (4'ten) küçük kalana kadar 4'e böleceğiz ve Kalanları not edeceğiz.
98 / 4 = 24 -> KALAN: 2
24 / 4 = 6 -> KALAN: 0
6 / 4 = 1 -> KALAN: 2
(Bölüm (1) tabandan (4) küçük olduğu için işlem bitti. Bölümü de alırız.)
Adım 2: Kalanları Tersten Okuma
En son bölümden başlayarak tüm kalanları aşağıdan yukarıya doğru okuruz:
1 ... 2 ... 0 ... 2 Cevap: (1202)₄
1. (4A2)₆ sayısında A kaç farklı değer alır?
2. (213)ₐ ve (134)ₐ (Hata! b olmalı) sayıları için a+b en az kaçtır?
Kural: Rakamlar tabandan (6) küçük olmalı.
4<6 (Doğru), 2<6 (Doğru), A<6 (Zorunlu).
A'nın alabileceği değerler: {0, 1, 2, 3, 4, 5}.
Cevap: 6 farklı değer alır.
Soru 2: (213)ₐ ve (134)ₑ (Düzeltme: (134)ₐ değil, (134)ₑ)
(Not: Soruyu (134)b olarak düzeltiyorum, aksi halde anlamsız olur)
(213)ₐ: Taban 'a', en büyük rakamdan (3) büyük olmalı. a > 3. En az a=4.
(134)ₑ: Taban 'b', en büyük rakamdan (4) büyük olmalı. b > 4. En az b=5.
Toplam en az: 4 + 5 = 9. Cevap: 9
Şimdi 3 soruluk mini sınava geçelim!
En klasik KPSS soruları bu adımdadır. İki kuralı birleştiririz.
5 ve 7 sayı tabanıdır. (32)₅ = (2a)₇ olduğuna göre, a kaçtır?
Sol Taraf (32)₅:
= (3 * 5¹) + (2 * 5⁰)
= (3 * 5) + (2 * 1) = 15 + 2 = 17
Sağ Taraf (2a)₇:
= (2 * 7¹) + (a * 7⁰)
= (2 * 7) + (a * 1) = 14 + a
(Hayati kuralı unutma: a < 7 olmalı)
Denklemi Çöz:
17 = 14 + a
17 - 14 = a => a = 3
(a=3, kurala uyuyor mu? Evet, 3 < 7) Cevap: 3
4 tabanında (213)₄ + (132)₄ işleminin sonucu yine 4 tabanında kaçtır?
Garanti Yol: 10'luğa çevir, Topla, Geri çevir.
Adım 1: 10'luğa Çevir
(213)₄ = (2 * 4²) + (1 * 4¹) + (3 * 4⁰) = (2*16) + (1*4) + (3*1) = 32 + 4 + 3 = 39
(132)₄ = (1 * 4²) + (3 * 4¹) + (2 * 4⁰) = (1*16) + (3*4) + (2*1) = 16 + 12 + 2 = 30
Adım 2: 10'luk Tabanda Topla
39 + 30 = 69
Adım 3: Sonucu Geri 4'lük Tabana Çevir
69'u sürekli 4'e böl:
69 / 4 = 17 -> Kalan: 1
17 / 4 = 4 -> Kalan: 1
4 / 4 = 1 -> Kalan: 0
Bölüm (1) 4'ten küçük olunca durduk.
Tersten oku: 1011 Cevap: (1011)₄
t sayı tabanı (t > 2) olmak üzere, A = (201)t, B = (102)t ve A - B = 63 olduğuna göre, t (taban) kaçtır?
A = (201)t = (2 * t²) + (0 * t¹) + (1 * t⁰) = 2t² + 1
Adım 2: B Sayısını 10'luğa Çevir
B = (102)t = (1 * t²) + (0 * t¹) + (2 * t⁰) = t² + 2
Adım 3: Denklemi Kur (Parantez Tuzağı!)
A - B = 63
(2t² + 1) - (t² + 2) = 63
Eksiyi dağıt:
2t² + 1 - t² - 2 = 63
Adım 4: Denklemi Çöz
(2t² - t²) + (1 - 2) = 63
t² - 1 = 63
t² = 64
t = 8 (Taban negatif olamaz)
Cevap: 8
Şimdi 3 soruluk mini sınava geçelim!
Tebrikler! Bölüm 3'ü tamamladın. Şimdi öğrendiklerimizi 10 soruluk bir final sınavıyla test etme zamanı.
Unutma: Geçmek için 10 sorudan en az 8'ini doğru yapmalısın!
Test Sonucu
Harikasın!
Tebrikler! Bu adımı başarıyla tamamladın.
Test Sonucu
Tekrar Deneyelim!
Birkaç hata var. Lütfen konuyu tekrar gözden geçirin.